The

Complete
Reference

Operator Overloading

4 C++: The Complete Reference

can overload most operators so that they perform special operations relative

to classes that you create. For example, a class that maintains a stack might
overload + to perform a push operation and - - to perform a pop. When an operator
is overloaded, none of its original meanings are lost. Instead, the type of objects it can
be applied to is expanded.

The ability to overload operators is one of C++'s most powerful features. It allows
the full integration of new class types into the programming environment. After
overloading the appropriate operators, you can use objects in expressions in just the
same way that you use C++'s built-in data types. Operator overloading also forms the
basis of C++'s approach to 1/0.

You overload operators by creating operator functions. An operator function defines the
operations that the overloaded operator will perform relative to the class upon which it
will work. An operator function is created using the keyword operator. Operator functions
can be either members or nonmembers of a class. Nonmember operator functions are
almost always friend functions of the class, however. The way operator functions
are written differs between member and nonmember functions. Therefore, each will
be examined separately, beginning with member operator functions.

C losely related to function overloading is operator overloading. In C++, you

| Creating a Member Operator Function

A member operator function takes this general form:

ret-type class-name::operator#(arg-list)
{
/ / operations

)

Often, operator functions return an object of the class they operate on, but ret-type
can be any valid type. The # is a placeholder. When you create an operator function,
substitute the operator for the #. For example, if you are overloading the / operator,
use operator/. When you are overloading a unary operator, arg-list will be empty.
When you are overloading binary operators, arg-list will contain one parameter.
(The reasons for this seemingly unusual situation will be made clear in a moment.)

Here is a simple first example of operator overloading. This program creates a
class called loc, which stores longitude and latitude values. It overloads the + operator
relative to this class. Examine this program carefullv, paving special attention to the
definition of operator+():

Chapter 15:

#include <iostream>

using namespace std;

class loc {
int longitude, latitude;
public:
loc() {}
loc{int 1lg, int 1lt) {
longitude = lg;
latitude = 1t;

}
void show() {
cout << longitude << " ";
cout << latitude << "\n";
}

loc operator+(loc op2);
}i

// Overload + for loc.
loc loc::operator+(loc op2)

{

loc temp;

temp.longitude = op2.longitude + longitude;
temp.latitude = op2.latitude + latitude;

return temp;
int main()
{

loc obl (10, 20), ob2(5, 30);

obl.show(); // displays 10 20
ob2.show(); // displays 5 30

obl = obl + ob2;
obl.show(); // displays 15 50

return 0;

Operator Overloading

385

C++: The Complete Reference

As you can see, operator+() has only one parameter even though it overloads the
binary + operator. (You might expect two parameters corresponding to the two operands
of a binary operator.) The reason that operator+() takes only one parameter is that the
operand on the left side of the + is passed implicitly to the function through the this
pointer. The operand on the right is passed in the parameter op2. The fact that the left
operand is passed using this also implies one important point: When binary operators
are overloaded, it is the object on the left that generates the call to the operator function.

As mentioned, it is common for an overloaded operator function to return an
object of the class it operates upon. By doing so, it allows the operator to be used in
larger expressions. For example, if the operator+() function returned some other
type, this expression would not have been valid:

obl = obl + ob2;

In order for the sum of ob1 and ob2 to be assigned to ob1, the outcome of that operation
must be an object of type loc.

Further, having operator+() return an object of type loc makes possible the
following statement:

l (obl+ob2) .show(); // displays outcome of obl+ob2

In this situation, ob1+ob2 generates a temporary-object that ceases to exist after the call
to show() terminates.

It is important to understand that an operator function can return any type and that
the type returned depends solely upon your specific application. It is just that, often,
an operator function will return an object of the class upon which it operates.

One last point about the operator+() function: It does not modify either operand.
Because the traditional use of the + operator does not modify either operand, it makes
sense for the overloaded version not to do so either. (For example, 5+7 yields 12, but
neither 5 nor 7 is changed.) Although you are free to perform any operation you want
inside an operator function, it is usually best to stay within the context of the normal
use of the operator.

The next program adds three additional overloaded operators to the loc class: the -,
the =, and the unary ++. Pay special attention to how these functions are defined.

#include <iostream>
using namespace std;

class loc {
int longitude, latitude;

Chapter 15:

public:
loc() {} // needed to construct temporaries
loc{int lg, int 1t} {

longitude = lg;

latitude = 1t;

void show(} {
cout << longitude << " ";

cout << latitude << "\n";

loc operator+(loc op2);
loc operator-(loc op2);
loc operator=(loc op2};
loc operator++();

}i

// Overload + for loc.
loc loc::operator+ (loc op2)

{

loc temp;

temp.longitude = op2.longitude + longitude;
temp.latitude = op2.latitude + latitude;

return temp;
// Overload - for loc.
loc loc::operator-(loc op2)
{
loc temp;
// notice order of operands
temp.longitude = longitude - op2.longitude;

temp.latitude = latitude - op2.latitude;

return temp;

// Overload asignment for loc.

Operator Overloading

387

388 C++: The Complete Reference

loc loc::operator={loc op2)
{
longitude = op2.longitude;
latitude = op2.latitude;

return *this; // i.e., return object that generated call

// Overload prefix ++ for loc.
loc loc::operator++ ()
{

longitude++;

latitude++;

return *this;

~

int main()
{
loc obl (10, 20), ob2(5, 30), ob3(90, 90);

obl.show() ;
ob2.show() ;

++0bl;
obl.show(); // displays 11 21

ob2 = ++obl;
obl.show(); // displays 12 22
ob2.show(); // displays 12 22

obl = ob2 = ob3; // multiple assignment
obl.show(); // displays 90 90
ob2.show(); // dispiays 90 90

return 0;

First, examine the operator—() function. Notice the order of the operands in the
subtraction. In keeping with the meaning of subtraction, the operand on the right side
of the minus sign is subtracted from the operand on the left. Because it is the object on
the left that generates the call to the operator—() function, op2’s data must be subtracted

Chapter 15: Operator Overloading 389

from the data pointed to by this. It is important to remember which operand generates
the call to the function.

In C++, if the = is not overloaded, a default assignment operation is created auto-
matically for any class you define. The default assignment is simply a member- by-member,
bitwise copy. By overloading the =, you can define explicitly what the assignment does
relative to a class. In this example, the overloaded = does exactly the same thing as
the default, but in other situations, it could perform other operations. Notice that the
operator=() function returns *this, which is the object that generated the call. This
arrangement is necessary if you want to be able to use multiple assignment operations
such as this:

obl = ob2 = ob3; // multiple assignment

Now, look at the definition of operator++(). As you can see, it takes no parameters.
Since ++ is a unary operator, its only operand is implicitly passed by using the
this pointer.

Notice that both operator=() and operator++() alter the value of an operand.
In the case of assignment, the operand on the left (the one generating the call to the
operator=() function) is assigned a new value. In the case of the ++, the operand is
incremented. As stated previously, although you are free to make these operators do
anything you please, it is almost always wisest to stay consistent with their original
meanings.

Creating Prefix and Postfix Forms
of the Increment and Decrement Operators

In the preceding program, only the prefix form of the increment operator was overloaded.
However, Standard C++ allows you to explicitly create separate prefix and postfix
versions of the increment or decrement operators. To accomplish this, you must define
two versions of the operator++() function. One is defined as shown in the foregoing
program. The other is declared like this:

loc operator++(int x);

If the ++ precedes its operand, the operator++() function is called. If the ++ follows its
operand, the operator++(int x) is called and x has the value zero.

The preceding example can be generalized. Here are the general forms for the prefix
and postfix ++ and — ~ operator functions.

// Prefix increment
type operator++() {
// body of prefix operator

|

390 C++: The Complete Reference

// Postfix increment

fype operator++(int x) {

// body of postfix operator
}

// Prefix decrement
type operator——() {

// body of prefix operator
J

// Postfix decrement

fijpe operator— —(int x) {

// body of postfix operator
}

Note l You should be careful when working with older C++ programs where the increment

and decrement operators are concerned. In older versions of C++, it was not possible
to specify separate prefix and postfix versions of an overloaded ++ or — . The prefix
form was used for both.

Overloading the Shorthand Operators

You can overload any of C++'s "shorthand" operators, such as +=, —=, and the like.
For example, this function overloads += relative to loc:

loc loc::operator+=(loc op2)

{
longitude = op2.longitude + longitude;
latitude = op2.latitude + latitude:

return *this;

}

When overloading one of these operators, keep in mind that you are simply
combining an assignment with another type of operation.

Operator Overloading Restrictions

There are some restrictions that apply to operator overloading. You cannot alter the
precedence of an operator. You cannot change the number of operands that an operator
takes. (You can choose to ignore an operand, however.) Except for the function call

]

Chapter 15: Operator Overloading

operator (described later), operator functions cannot have default arguments. Finally,
these operators cannot be overloaded:

.k D

As stated, technically you are free to perform any activity inside an operator
function. For example, if you want to overload the + operator in such a way that
it writes I like C++ 10 times to a disk file, you can do so. However, when you stray
significantly from the normal meaning of an operator, you run the risk of dangerously
destructuring your program. When someone reading your program sees a statement
like Ob1+0b2, he or she expects something resembling addition to be taking place—
not a disk access, for example. Therefore, before decoupling an overloaded operator
from its normal meaning, be sure that you have sufficient reason to do so. One good
example where decoupling is successful is found in the way C++ overloads the << and
>> operators for 1/O. Although the 1/O operations have no relationship to bit shifting,
these operators provide a visual "clue” as to their meaning relative to both I/O and bit
shifting, and this decoupling works. In general, however, it is best to stay within the
context of the expected meaning of an operator when overloading it.

Except for the = operator, operator functions are inherited by a derived class.
However, a derived class is free to overload any operator (including those overloaded
by the base class) it chooses relative to itself.

Operator Overloading Using a Friend Function

You can overload an operator for a class by using a nonmember function, which is
usually a friend of the class. Since a friend function is not a member of the class, it
does not have a this pointer. Therefore, an overloaded friend operator function is passed
the operands explicitly. This means that a friend function that overloads a binary operator
has two parameters, and a friend function that overloads a unary operator has one
parameter. When overloading a binary operator using a friend function, the left operand
is passed in the first parameter and the right operand is passed in the second parameter.
In this program, the operator+() function is made into a friend:

#include <iostream>

using namespace std;

class loc {
int longitude, latitude;
public:

391

392 C++: The Complete Reference

loc() {} // needed to construct temporaries
loc(int 1g, int 1t) ¢

longitude = lg;

latitude = 1t;

void show() {
cout << longitude << " *;
cout << latitude << "\n";

friend loc operator+(loc opl, loc op2); // now a friend
loc operator-(loc op2);
loc operator=(loc op2);
loc operator++ () ;
}:

// Now, + is overloaded using friend function.
loc operator+(loc opl, loc op2)

{

loc temp;

temp.longitude = opl.longitude + op2.longitude;
temp.latitude = opl.latitude + op2.latitude;

return temp;
// Overload - for loc.
loc loc::operator-(loc op2)
{
loc temp;
// notice order of operands
temp.longitude = longitude - op2.longitude;

temp.latitude = latitude - op2.latitude;

return temp;

// Overload assignment for loc.

Chapter 15: Operator Overloading

loc loc::operator=(loc op2)
{
longitude = op2.longitude;
latitude = op2.latitude;

return *this; // i.e., return object that generated call

}
// Overload ++ for loc.

loc loc::operator++()

{

return *this;

int main()
{
loc obl{10, 20), ob2(5, 30);

obl = obl + ob2;
obl.show(};

return 0;

There are some restrictions that apply to friend operator functions. First, you
may not overload the =, (), [], or => operators by using a friend function. Second, as
explained in the next section, when overloading the increment or decrement operators,
you will need to use a reference parameter when using a friend function.

Using a Friend to Overload ++ or ——

If you want to use a friend function to overload the increment or decrement operators,
you must pass the operand as a reference parameter. This is because friend functions
do not have this pointers. Assuming that you stay true to the original meaning of the
++ and - - operators, these operations imply the modification of the operand they
operate upon. However, if you overload these operators by using a friend, then the
operand is passed by value as a parameter. This means that a friend operator function
has no way to modify the operand. Since the friend operator function is not passed

394

C++: The Complete Reference

a this pointer to the operand, but rather a copy of the operand, no changes made to
that parameter affect the operand that generated the call. However, you can remedy
this situation by specifying the parameter to the friend operator function as a reference
parameter. This causes any changes made to the parameter inside the function to affect
the operand that generated the call. For example, this program uses friend functions to
overload the prefix versions of ++ and — - operators relative to the loc class:

#include <iostream>
using namespace cstd;

class loc {
int longitude, latitude;
public:
loc() {1}
loc(int lg, int 1t) {
longitude = 1lg;
latitude = 1t;

void show() {

cout << longitude << ;
cout << latitude << "\n";

loc operator=(loc op2);

friend loc operator++(loc &op);

friend loc operator--(loc &op):
Y

// Overload assignment for loc.
loc loc::operator={(loc op2)
{
longitude = op2.longitude;
latitude = op2.latitude;

return *this; ,/ i.e., return object that generated call
// Now a friend; use a reference parameter.

loc operator++(loc &op)
{

Chapter 15: Operator Overloading 395

op.longitude++;
op.latitude++;

return op;

// Make op-- a friend; use reference.
loc operator--{loc &op)

{

op.longizude~-;

op.latitude--;

return op;

int main()

{
loc obl (10, 20), ob2;

obl.show();

++0bl;

obl.show(); // displays 11 21
ob2 = ++obl;

ob2.show(); // displays 12 22
--0b2;

ob2.show(); // displays 11 21

return 0;

If you want to overload the postfix versions of the increment and decrement operators
using a friend, simply specify a second, dummy integer parameter. For example, this
shows the prototype for the friend, postfix version of the increment operator relative
to loc.

// friend, postfix version of ++
friend loc operator++(loc &op, int X);

396 C++: The Complete Reference

Friend Operator Functions Add Flexibility

In many cases, whether you overload an operator by using a friend or a member
function makes no functional difference. In those cases, it is usually best to overload
by using member functions. However, there is one situation in which overloading by
using a friend increases the flexibility of an overloaded operator. Let's examine this
case now.

As you know, when you overload a binary operator by using a member function,
the object on the left side of the operator generates the call to the operator function.
Further, a pointer to that object is passed in the this pointer. Now, assume some
class that defines a member operator+() function that adds an object of the class to
an integer. Given an object of that class called Ob, the following expression is valid:

Ob + 100 // valid

In this case, Ob generates the call to the overloaded + function, and the addition is
performed. But what happens if the expression is written like this?

100 + Ob // invalid

In this case, it is the integer that appears on the left. Since an integer is a built-in type,
no operation between an integer and an object of Ob's type is defined. Therefore, the
compiler will not compile this expression. As you can imagine, in some applications,
having to always position the object on the left could be a significant burden and cause
of frustration.

The solution to the preceding problem is to overload addition using a friend, not
a member, function. When this is done, both arguments are explicitly passed to the
operator function. Therefore, to allow both object+integer and integer+object, simply
overload the function twice—one version for each situation. Thus, when you overload
an operator by using two friend functions, the object may appear on either the left or
right side of the operator.

This program illustrates how friend functions are used to define an operation that
involves an object and built-in type:

#include <iostream:>
using namespace std;

class loc {
int longitude, latitude;
public:

loc () {}
loc({int lg, int 1t) {
longitude = lg;

latitude = 1t;

void show() {
cout << longitude << "
cout << latitude <<

friend loc operator+(loc
friend loc operator+(int
}s

// + is overloaded for loc
loc operator+(loc opl, int

{
loc temp;

Chapter 15:

w o
’

"\n":

opl, int op2);
opl, loc op2);
+ int.

op2)

temp.longitude = opl.longitude + op2;

temp.latitude = opl.latitude + opZ2;

return temp;
}
// + is overloaded for int
loc operator+(int opl, loc

{

loc temp;

+ loc.
op2)

temp.longitude = opl + op2.longitude;

temp.latitude = opl + op2.latitude;

return temp;

int main{)
{
loc obl (10,

20), ob2(5,

obl.show();

30), cb3(7, 14);

Operator Overloading

397

398 C++: The Complete Reference

ob2.show () ;
ob3.show() ;

obl = ob2 + 10; /, both cf these
ob3 = 10 + ob2; /, are valid

obl.show();
ob3.show() ;

return 0;

___| overloading new and delete

It is possible to overload new and delete. You might choose to do this if you want

to use some special allocation method. For example, you may want allocation routines

that automatically begin using a disk file as virtual memory when the heap has been

exhausted. Whatever the reason, it is a very simple matter to overload these operators.
The skeletons for the functions that overload new and delete are shown here:

// Allocate an object.
void *operator new(size_t size)
{
/* Perform allocation. Throw bad_alloc on failure.
Constructor called automatically. */
return pointer_to_memory;

// Delete an object.
void operator delete(void *p)
{
/* Free memory pointed to by p.
Destructor called automatically. */

The type size_t is a defined tvpe capable of containing the largest single piece
of memory that can be allocated. (size_t is essentially an unsigned integer.) The
parameter size will contain the number of bytes needed to hold the object being
allocated. This is the amount of memory that your version of new must allocate. The
overloaded new function must return a pointer to the memory that it allocates, or
throw a bad_alloc exception if an allocation error occurs. Beyond these constraints,
the overloaded new function can do anything else you require. When you allocate an

Chapter 15: Operator Overloading

object using new (whether your own version or not), the object's constructor is
automatically called.

The delete function receives a pointer to the region of memory to be freed. It
then releases the previously allocated memory back to the system. When an object
is deleted, its destructor is automatically called.

The new and delete operators may be overloaded globally so that all uses of these
operators call your custom versions. They may also be overloaded relative to one or
more classes. Lets begin with an example of overloading new and delete relative to
a class. For the sake of simplicity, no new allocation scheme will be used. Instead, the
overloaded operators will simply invoke the standard library functions malloc() and
free(). (In your own application, you may, of course, implement any alternative allocation
scheme you like.)

To overload the new and delete operators for a class, simply make the overloaded
operator functions class members. For example, here the new and delete operators are

overloaded for the loc class:

#include <icstream>
#include <cstdlib>
#include <new>

using namespace std;

class loc {
int longitude, latitude;

public:

loc () {}

loc{int 1lg, int 1lt) {
longitude = lg;
latitude = 1t;

void show() {
cout << longitude << " ";
cout << latitude << "\n";

void *operator new(size_t sizej;
void operator delete(void *p);

T

// new overloaded relative to loc.
void *loc::operator new(size_t size)

void *p;

399

400

C++: The Complete Reference

cout << "In overloaded new.\n";
p = malloc(size);
if(tp) {
bad_alloc ba;
throw ba;
}

return p;

// delete overloaded relative to loc.
void loc::operator delete(void *p)

cout << "In overloaded delete.\n";
free(p);

int main()

loc *pl, *p2;

try {
pl = new loc (10, 20);

} catch (bad_alloc xa) {
cout << "Allocation error for pl.\n";
return 1;

try {
p2 = new loc (-10, -20);

} catch (bad_alloc xa) {
cout << "Allocation error for r2.\n";
return 1;;

pl->show() ;
p2->show() ;

delete pi1;
delete p2;

return 0;

Chapter 15: Operator Overloading

Output from this program is shown here.

In overloaded new.

In overloaded new.

10 20

-10 -20

In overloaded delete.
In overloaded delete.

When new and delete are for a specific class, the use of these operators on any
other type of data causes the original new or delete to be employed. The overloaded
operators are only applied to the types for which they are defined. This means that if
you add this line to the main(), the default new will be executed:

I int *f = new float; // uses default new

You can overload new and delete globally by overloading these operators outside
of any class declaration. When new and delete are overloaded globally, C++'s default
new and delete are ignored and the new operators are used for all allocation requests.
Of course, if you have defined any versions of new and delete relative to one or more
classes, then the class-specific versions are used when allocating objects of the class for
which they are defined. In other words, when new or delete are encountered, the
compiler first checks to see whether they are defined relative to the class they are
operating on. If so, those specific fsions are used. If not, C++ uses the globally defined
new and delete. If these have beén overloaded, the overloaded versions are used.

To see an example of overloading new and delete globally, examine this program:

#include <iostream>
#include <cstdlib>
#include <new>
using namespace std;

class loc {
int longitude, latitude;
public:
loc () {}
loc(int lg, int 1t) {
longitude = 1g;
latitude = 1t;

402 C++: The Complete Reference

void show() {
cout << longitude << " ";

i

cout << latitude << "\n";
Y

// Global new
void *operator new(size_t size)
{

void *p;

p = malloc(size);
if(!'p) |
bad_alloc ba;
throw ba;
}

return p;

// Global delete
void operator delete(void *p)
{

free(p);

int main()

{
loc *pl, *p2;
float *f;

try {
pl = new loc (10, 20);

} catch (bad_alloc xa) {
cout << "Allocation error for pl.\n";
return 1;;

try |
p2 = new loc (-10, -20);

} catch (bad_alloc xa) {
cout << "Allocation error for p2.\n";
return 1;;

Chapter 15: Operator Overloading 403

try {

f = new float; // uses overloaded new, too
} catch (bad_alloc xa) {

cout << "Allocation error for f£.\n";

return 1;;

*f = 10.10F;

cout << *f << "\n";

pl->show() ;
p2->show() ;

delete pl;
delete p2;
delete f;

return 0;

Run this program to prove to yourself that the built-in new and delete operators
have indeed been overloaded.

Overloading new and delete for Arrays

If you want to be able to allocate arrays of objects using your own allocation system,
you will need to overload new and delete a second time. To allocate and free arrays,
you must use these forms of new and delete.

'/ Allocate an array of objects.
void *operator newl] (size_t size)
{
/* Perform allocation. Throw bad_alloc on failure.
Constructor for each element called automatically. */
return pointer_to_memory;

// Delete an array of objects.
void operator delete[] (void *p)

C++: The Complete Reference

/* Free memory pointed to by p.
Destructor for each element called automatically.
*/

When allocating an array, the constructor for each object in the array is automatically
called. When freeing an array, each object's destructor is automatically called. You do
not have to provide explicit code to accomplish these actions.

The following program allocates and frees an object and an array of objects of
type loc.

#include <iostream>
#include <cstdlib>
#include <new>
using namespace std;

class loc {
int longitude, latitude;
public:
loc() {longitude = latitude = 0;}
loc(int 1lg, int 1lt) {
longitude = 1lg;
latitude = 1t;

void show() {
cout << longitude << " ";
cout << latitude << "\n";

void *operator new(size_t size);
void operator delete(void *p);

void *operator new[] (size_t size);
void operator delete[] (void *p);

Y

// new overloaded relative to loc.
void *loc::operator new(size_t size)

{

Chapter 15:

void *p;

cout << "In overloaded new.\n";
p = malloc(size);
1f(p) {
bad_alloc ba;
throw ba;
}

return p;

// delete overloaded relative to loc.
void loc: :operator delete(void *p)
{
cout << "In overloaded delete.\n";
free(p);

// new overloaded for loc arrays.
void *loc::operator new[] (size_t size)
{

void *p;

cout << "Using overload newl].\n";
p = malloc(size);
if(ip) |
bad_alloc ba;
throw ba;
}

return p;

// delete overloaded for loc arrays.
void loc::operator delete[] (void *p)
{

Operator Overloading

cout << "Freeing array using overloaded delete[]\n";

free(p);

int main()
{
loc *pl, *p2;

406 C++: The Complete Reference

int 1i;

try {

pl = new loc (10, 20); // allccate an object
} catch (bad_alloc xa) {

cout << "Allocation error for pl.\n";

return 1;;

try {
p2 = new loc [10]; // allocate an array
} catch (bad_alloc xa) {
cout << "Allocation error for p2.\n";
return 1;;

pl->show() ;

for

(1=0; 1<10; i++)
p2 (1

i].show();

delete pl; // free an object
delete [] p2; // free an array

return 0;

Overloading the nothrow Version of new and delete

You can also create overloaded nothrow versions of new and delete. To do so, use
these skeletons.

// Nothrow version of new.
void *operator new(size_t size, const nothrow_t &n)
{

// Perform allocation.

if (success) return pointer_to_memory;

else return 0;

// Nothrow version of new for arrays.

Chapter 15: Operator Overloading 407

void *operator new[] (size_t size, const nothrow t &n)
‘

s

// Perform allocation.
if (success) return pointer_to_memory;

else return 0;

void operator delete(void *p, const nothrow_t &n)

// free memory

void operator delete[] (void *p, const nothrow_t &n)

// free memory

The type nothrow_t is defined in <new>. This is the type of the nothrow object. The
nothrow_t parameter is unused.

| Overloading Some Special Operators
C++ defines array subscripting, function calling, and class member access as operations.
The operators that perform these functions are the [1, (), and —>, respectively. These rather
exotic operators may be overloaded in C++, opening up some very interesting uses.
One important restriction applies to overloading these three operators: They must
be nonstatic member functions. They cannot be friends.

Overloading []

In C++, the []is considered a binary operator when you are overloading it. Therefore,
the general form of a member operator[]() function is as shown here:

type class-name::operator[](int 7)
{

/...
}

Technically, the parameter does not have to be of type int, but an operator|]() function
is typically used to provide array subscripting, and as such, an integer value is
generally used.

b C++: The Complete Reference

Given an object called O, the expression

I

translates into this call to the operator[]() function:

! O.operator (] (3)

That is, the value of the expression within the subscripting operators is passed to the
operator{]() function in its explicit parameter. The this pointer will point to O, the object
that generated the call.

In the following program, atype declares an array of three integers. Its constructor
initializes each member of the array to the specified values. The overloaded operator(1()
function returns the value of the array as indexed by the value of its parameter.

#include <iostream>
using namespace std;

class atype ({

int al3];
public:
atype(int i, int j, int k) {
al0] = 1i;
alll = 3;.
al2] = k;

}
int operator[] (int i) { return alil; }
};

int main()
{
atype ob(l, 2, 3);

cout << ob[l}; // displays 2

return O;

You can design the operator[1() function in such a way that the [] can be used on
both the left and right sides of an assignment statement. To do this, simply specify the

Chapter 15: Operator Overloading

return value of operator[]() as a reference. The following program makes this change
and shows its use:

#include <iostream>

using namespace std;

class atype {

int al3];
public
atype(int 1, int j, int ki {
al0] = 1;
alll = 3;
al2] = k;

int &operator { return alil; }
b
int main{()
{

atype ob(1l, 2, 3};

cout << ob(l}; // displays 2

cout << " "y

ob[1l] = 25; // [I on left of =
cout << ob[l]; // now displays 25
return 0;

Because operator[]() now returns a reference to the array element indexed by i,
it can be used on the left side of an assignment to modify an element of the array. (Of
course, it may still be used on the right side as well.)

One advantage of being able to overload the [] operator is that it allows a means
of implementing safe array indexing in C++. As vou know, in C++, it is possible to
overrun (or underrun) an array boundary at run time without generating a run-time
error message. However, if you create a class that contains the array, and allow access
to that array only through the overloaded [] subscripting operator, then you can
intercept an out-of-range index. For example, this program adds a range check to
the preceding program and proves that it works:

409

410 C++: The Complete Reference

Bl

// A safe array example.
#include <iostream>
#include <cstdlib>
using namespace std;

class atype {

int al3];
public:

atype(int 1, int j, int k) ¢
al0}] = 1;
alll = 3;
al2] = k;

}

int &operator[] (int 1i);

b

// Provide range checking for atype.
int &atype::operator[] (int 1)
{
if(i<0 || i> 2) [
cout << "Boundary Error\n";
exit (1) ;
}

return afil;

int main()

{
atype ob(l, 2, 3);

cout << ob[l]; // displays 2
cout << " ",
obl[l] = 25; // [] appears on left

cout << obll]; // displays 25

ob[3] = 44; // generates runtime error, 3 out-of-range

return 0;

Chapter 15: Operator Overloading

In this program, when the statement

ob[3] = 44;

executes, the boundary error is intercepted by operator[](), and the program

is terminated before any damage can be done. (In actual practice, some sort of
error-handling function would be called to deal with the out-of-range condition;
the program would not have to terminate.)

Overloading ()

When you overload the () function call operator, you are not, per se, creating a new
way to call a function. Rather, you are creating an operator function that can be passed
an arbitrary number of parameters. Let's begin with an example. Given the overloaded
operator function declaration

double operator () (int a, float f, char *s);

and an object O of its class, then the statement

0(10, 23.34, "hi");

translates into this call to the operator() function.

O.operator () (10, 23.34, "hi");

In general, when you overload the () operator, you define the parameters that
you want to pass to that function. When you use the () operator in your program,
the arguments you specify are copied to those parameters. As always, the object
that generates the call (O in this example) is pointed to by the this pointer.

Here is an example of overloading () for the loc class. It assigns the value of its
two arguments to the longitude and latitude of the object to which it is applied.

#include <iostream>

using namespace std;

class loc {
int longitude, latitude;
public:

411

412 C++: The Complete Reference

loc() {1}

loc(int lg, int _t)
longitude = 1g;
latitude = 1t;

void show () {
cout << longitude << " ";
cout << latitude << "\n";

loc operator+(loc op2);

loc operator() (int i, int j);
};
// Overload () for loc.
loc loc::operator () (int i, int 7J)
{

longitude = 1i;
latitude = j;

return *this;

// Overload + for loc.
loc loc::operator+(loc op2)
{

loc temp;

temp.longitude = op2.longitude + longitude;
temp.latitude = op2.latitude + _atitude;
return temp;

int main()
{
loc obl (10, 20), ob2(1, 1);

obl.show() ;
obl(7, 8); // can be executed by itself
obl.show() ;

Chapter 15: Operator Overloading

obl = ob2 + obl(10, 10); // can be used in expressions
obl.show() ;

return 0;

The output produced by the program is shown here.

—

10 20
7 8
11 11

Remember, when overloading (), you can use any type of parameters and return
any type of value. These types will be dictated by the demands of your programs. You
can also specify default arguments.

Overloading —>

The —> pointer operator, also called the class member access operator, is considered
a unary operator when overloading. Its general usage is shown here:

object->element;

Here, object is the object that activates the call. The operator—>() function must return
a pointer to an object of the class that operator->() operates upon. The eleinent must be
some member accessible within the object.

The following program illustrates overloading the —> by showing the equivalence
between ob.i and ob—>i when operator—>() returns the this pointer:

#include <iostream>
using namespace std;

class myclass {
public:

int i;

myclass *operator->() {return this;}
b

int main()
{
myclass ob;

413

414 C++: The Complete Reference

ob->1 = 10; // same as ob.1i
cout << ob.i << " " << cbh->1i;

return 0;

An operator—>() function must be a member of the class upon which it works.

] Overloading the Comma Operator

You can overload C++'s comma operator. The comma is a binary operator, and like all
overloaded operators, vou can make an overloaded comma perform any operation you
want. However, if you want the overloaded comma to perform in a fashion similar to
its normal operation, then your version must discard the values of all operands except
the rightmost. The rightmost value becomes the result of the comma operation. This
is the way the comma works by default in C++.

Here is a program that illustrates the effect of overloading the comma operator.

#include <iostream>
using namespace std;

class loc {
int longitude, latitude;
public:
loc () {1}
loc(int 1lg, int 1t) {
longitude = lg;
latitude = 1t;

void show() {
cout << longitude << " ";
cout << latitude << "\n";

loc operator+(loc op2);
loc operator, (loc op2);

Chapter 15: Operator Overloading 415

b

// overload comma for loc
loc loc::operator, (loc op2)
{

loc temp;
temp.longitude = op2.longitude;
temp.latitude = op2.latitude;

cout << gp2.longitude << " " << op2.latitude << "\n";

return temp;

// Overload + for loc
loc loc::operator+(loc op2)

{

loc temp;

temp.longitude = op2.longitude + longitude;
temp.latitude = op2.latitude + latitude;

return temp;

int main()
{
loc obl(10, 20), ob2(5, 30), o2b3(1, 1);

‘

obl.show()

ob2.show() ;

ob3.show() ;
\

1

cout << n";
obl = (obl, ob2+ocb2, ob3);

obl.show(); // displays 1 1, the value of ob:

return 0;

416 C++: The Complete Reference

This program displavs the following output:

10 20
5 30
11

10 60
11
11

Notice that although the values of the left-hand operands are discarded, each expression

is still evaluated by the compiler so that any desired side effects will be performed.
Remember, the left-hand operand is passed via this, and its value is discarded

by the operator,() function. The value of the right-hand operation is returned by

the function. This causes the overloaded comma to behave similarly to its default

operation. If you want the overloaded comma to do something else, you will have

to change these two features.

